A single atom probe of lattice gases in momentum space

H. Cayla,1 C. Carcy,1 Q. Bouton,1 R. Chang,1 M. Mancini,1 D. Clément,1 and G. Carleo2

1Laboratoire Charles Fabry, Institut d’Optique, CNRS, Univ. Paris Saclay
2Institute for Theoretical Physics, ETH Zurich

Correlations between the degrees of freedom of individual quantum particles has been identified as a key resource to solve open many-body problems. So far, a large experimental effort has been devoted to the building of apparatus capable of measuring spatial and spin correlations in one and two dimensions. We will present an experiment that provides access to multi-particle correlations between the momentum degree of freedom in three-dimensional lattice systems. We produce Bose-Einstein condensates of Helium-4 atoms in a metastable state $[1, 2]$, whose internal energy (19.6 eV) is large enough to allow for an electronic detection of individual atoms in three dimensions $[3, 4]$. When released from a 3D optical lattice, we probe the gas in the far-field regime of expansion where the atom distribution can be exactly mapped on the in-trap momentum distribution. Comparison with ab-initio Quantum-Monte Carlo calculations in the Bose-Hubbard regime qualifies our apparatus as a single-atom probe delivering momentum distributions of strongly interacting systems as large as $60 \times 60 \times 60$ sites. We also illustrate novel capabilities to access physical quantities of interest, like the condensed fraction, by investigating the superfluid-to-normal phase transition.