Chern numbers counted in a synthetic-dimension quantum Hall strip

Ian Spielman

Joint Quantum Institute: NIST and UMD

We engineered a two-dimensional magnetic lattice in an elongated strip geometry, with effective per-plaquette flux about 4/3 times the flux quanta. The long direction of this strip is formed from a 1D optical lattice while the short direction is built from the 5 m_F states comprising the $f = 2$ ground state hyperfine manifold of 87Rb. We imaged the localized edge and bulk states of atomic Bose-Einstein condensates in this strip, with single lattice-site resolution along the narrow direction. In this 5-site wide strip we are able to delineate between bulk behavior quantified by Chern numbers and edge behavior which is not.